ETSI EN 301 489-17 V2.2.1: 2012 ETSI EN 301 489-1 V1.9.2: 2011 TEST REPORT

for

IRISNotes[™] Air 3

Model: XN690, IRISN690

Brand: IRIS

Test Report Number: C161220Z02-RE

Issued for:

Image Recognition Integrated Systems S.A(I.R.I.S. S.A.)
Rue du Bosquet 10, 1348 Louvain-La-Neuve, Belgium

Issued by:

COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC.

No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

> TEL: 86-755-28055000 FAX: 86-755-28055221

E-Mail: service@ccssz.com

Issued Date: December 22, 2016

中国认可 国际互认 检测 TESTING CNAS L4818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report.

Compliance Certification Services (Shenzhen) Inc.

Reference No.: C161020Z03-RE Report No.: C161220Z02-RE

Revision History

			Effect	
Rev.	Issue Date	Revisions	Page	Revised By
00	November 3, 2016	Initial Issue	ALL	Nancy Fu
01	December 22, 2016	Update	ALL	Amzula Chen

Rev 01: C161220Z02-RE

- 1. This report updated applicant, applicant address, manufacturer, manufacturer address, product name and added one model "IRISN690" and one brand "IRIS". After reassessment, this change didn't affect the test result.
- 2. The other information, please refer to the report No.: C161020Z03-RE and this report.

TABLE OF CONTENTS

1		TEST CERTIFICATION	4
2		EUT DESCRIPTION	5
3		TEST METHODOLOGY	6
	3.1.	UNIT OF MEASUREMENT	6
	3.2.	ANTENNA	6
	3.3.	DECISION OF FINAL TEST MODE	7
4		SETUP OF EQUIPMENT UNDER TEST	9
	4.1.	DESCRIPTION OF SUPPORT UNITS	9
	4.2.	CONFIGURATION OF SYSTEM UNDER TEST	9
	4.3.	TEST SETUP	9
5		FACILITIES AND ACCREDITATIONS	10
		FACILITIES	
		ACCREDITATIONS	
	5.3.	MEASUREMENT UNCERTAINTY	
6		EMISSION TEST	
		CONDUCTED EMISSION MEASUREMENT	
		RADIATED EMISSION MEASUREMENT	
		HARMONICS CURRENT MEASUREMENT	
	6.4.	VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	
7		IMMUNITY TEST	
		GENERAL DESCRIPTION	
		GENERAL PERFORMANCE CRITERIA DESCRIPTION	
		ELECTROSTATIC DISCHARGE (ESD)	
	7.4.	RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	.35
		ELECTRICAL FAST TRANSIENT (EFT)	
		SURGE IMMUNITY TEST	
		CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	
_	7.ŏ.	VOLTAGE DIP & VOLTAGE INTERRUPTIONS	
8		PHOTOGRAPHS OF THE TEST CONFIGURATION	4/

I TEST CERTIFICATION

Product	IRISNotes [™] Air 3
Model	XN690, IRISN690
Brand	IRIS
Tested	October 20~ November 3, 2016
Applicant	Image Recognition Integrated Systems S.A(I.R.I.S. S.A.) Rue du Bosquet 10, 1348 Louvain-La-Neuve, Belgium
Manufacturer	Image Recognition Integrated Systems S.A(I.R.I.S. S.A.) Rue du Bosquet 10, 1348 Louvain-La-Neuve, Belgium

APPLICABLE STANDARDS					
STANDARD TEST RESULT			TEST RESULT		
ETSI EN 301 489-17 _{V2.2.1: 2012}		No non-compliance noted			
Applicable Standard	Class/	Limit/Criterion	Test Result		
ETSI EN 301 489-1 _{V1.9.2: 2011}					
EN 55022: 2010+AC: 2011		Class B	No non-compliance noted		
EN 61000-3-2: 2014	Class A / D		Not applicable, since the EUT received DC power from the notebook		
EN 61000-3-3: 2013	Limit		Not applicable, since the EUT received DC power from the notebook		
EN 61000-4-2: 2009	C	Criterion B	No non-compliance noted		
EN 61000-4-3: 2006+A2: 2010		Criterion A	No non-compliance noted		
EN 61000-4-4: 2012		Criterion B	No non-compliance noted		
EN 61000-4-5: 2014	C	Criterion B	Not applicable, since the EUT received DC power from the notebook		
EN 61000-4-6: 2014	Criterion A		Not applicable, since the EUT received DC power from the notebook		
EN 61000-4-11: 2004	Crit	terion B/C/C	Not applicable, since the EUT received DC power from the notebook		

Deviation from Applicable Standard
None

The above equipment has been tested by Compliance Certification Services (Shenzhen) Inc., for compliance with the requirements set forth in ETSI EN 301 489-17 _{V2.2.1: 2012}. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sunday Hu

Supervisor of EMC Dept.

Compliance Certification Services (Shenzhen) Inc.

Reviewed by:

Ruby Zhang

Supervisor of Report Dept.

Compliance Certification Services (Shenzhen) Inc.

2 EUT DESCRIPTION

Product	IRISNotes [™] Air 3
Model	XN690, IRISN690
Brand	IRIS
Model Discrepancy	The models are identical to each other except their model name.
Identify Number	C161220Z02-RE
Received Date	October 20, 2016
EUT Power Rating	DC5V supplied by notebook or DC 3.7V supplied by the battery
Battery Manufacturer /Model No.	AE291558P8H O/P:DC3.7V, 200mAh
Frequency Range	2402 ~ 2480 MHz
Transmit Power (mean EIRP)	-4.04dBm
Modulation Technique	GFSK for 1Mbps
Number of Channels	40 Channels
Antenna Specification	PCB Antenna with -1dBi gain(Max)
Temperature Range	0°C ~ +40°C
Hardware Version	XN690-V1.3
Software Version	XN690_V1.00

Remark: for more details, please refer to the User's manual of the EUT.

3 TEST METHODOLOGY

All tests were performed in accordance with the procedure documented in ETSI EN 301 489-1 $_{V1.9.2:\ 2011}$ as referenced in ETSI EN 301 489-17 $_{V2.2.1:\ 2012}$.

3.1. UNIT OF MEASUREMENT

Measurements of radiated interference are reported in terms of $dB(\mu V/m)$ at a specified distance. The indicated readings on the Spectrum analyzers were converted to dB ($\mu V/m$) by use of appropriate conversion factors. Measurements of conducted interference are reported in terms of the Antenna Factor and Cable Factors and subtracting the Amplifier Gain from the measured reading. The following is a sample calculation: $dB(\mu V)$.

The field strength is calculated by adding

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

Assume a receiver reading of 52.5 dB μ V is obtained. The Antenna Factor of 7.4dB/m and a Cable Factor of 1.1dB are added. The Amplifier Gain of 29 dB is subtracted, giving field strength of 32 dB μ V/m. The 32-dB μ V/m values was mathematically converted to its corresponding level in μ V/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

Note: Level in $\mu V/m = Common Antilogarithm [(32 dB<math>\mu V/m)/20] = 39.8 \mu V/m$

3.2. ANTENNA

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 10 meters from the leading edge of the turntable.

3.3. DECISION OF FINAL TEST MODE

The following test mode was scanned during the preliminary test, and found to produce the highest emission level.

Pre-Test Mod	Pre-Test Mode				
	Conducted Emission (Main Port)	Mode 1: Charge			
	Radiated Emission	Mode 1: Normal			
	(Below 1GHz)	Mode 2: Charge			
	Radiated Emission	Mode 1: Normal			
Emission	(Above 1GHz)	Mode 2: Charge			
	Harmonics Current (EN 61000-3-2)	N/A			
	Voltage Fluctuation and Flicker (EN 61000-3-3)	N/A			
	Immunity (ESD) (EN 61000-4-2)	Mode 1: Normal			
	Immunity (RS) (EN 61000-4-3)	Mode 1: Normal			
Immunity	Immunity (EFT) (EN 61000-4-4)	Mode 1: Normal			
Illinumity	Immunity (Surge) (EN 61000-4-5)	N/A			
	Immunity (CS) (EN 61000-4-6)	N/A			
	Immunity (DIP) (EN 61000-4-11)	N/A			

After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mo	Final Test Mode			
	Conducted Emission (Main Port)	Mode 1		
	Radiated Emission (Below 1GHz)	Mode 1		
Emission	Radiated Emission (Above 1GHz)	Mode 1		
	Harmonics Current (EN 61000-3-2)	N/A		
	Voltage Fluctuation and Flicker (EN 61000-3-3)	N/A		
	Immunity (ESD) (EN 61000-4-2)	Mode 1		
	Immunity (RS) (EN 61000-4-3)	Mode 1		
Immunity	Immunity (EFT) (EN 61000-4-4)	Mode 1		
minumity	Immunity (Surge) (EN 61000-4-5)	N/A		
	Immunity (CS) (EN 61000-4-6)	N/A		
	Immunity (DIP) (EN 61000-4-11)	N/A		

Then, the EUT configuration and cable configuration of the above highest emission mode was chosen for all final test items.

4 SETUP OF EQUIPMENT UNDER TEST

4.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	Phone	N/A	N/A	DOC	SAMSUNG	N/A	N/A
2	Notebook	PP24L	R349CA00	DOC	DELL	N/A	Unshielded 1.50m (AC Cable) Unshielded 1.00m (DC Cable)
3	Digitla Pen	RDXN511	N/A	N/A	N/A	N/A	N/A

Note: Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.2. CONFIGURATION OF SYSTEM UNDER TEST

Setup Diagram

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

4.3. TEST SETUP

The equipment under test was configured and operated in a manner to communicate with the receiver continuously. EUT tends to maximize its emission characteristics in a typical application for conducted and radiated emission measurement. The RF module plus ancillary (stand alone unit) was evaluated as per table 1 of clause 7.1 of ETSI EN 301 489-1 V1.9.2: 2011. The transmitter was active during the conducted and radiated emission measurements

Software Used During the Test			
Operating System	N/A		
File Name N/A			
Program Sequence	 Install the EUT and other external peripheral devices as usual. Make sure the EUT work normally during the test. 		

Remark: During the test, no modification is made to the EUT to comply with Class B limit levels.

5 FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA China CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA FCC

Japan VCCI (C-4815, R-4320, T-2317, G-10624)

Canada INDUSTRY CANADA

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccssz.com

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

	Measurement	Frequency	Uncertainty
Conducted Emissions		9kHz~30MHz	+/-3.2878dB
	Test Site: 10m Chamber	30 MHz ~200 MHz	+/-3.8915dB
	(Vertical)	200 MHz ~1000 MHz	+/-3.8908dB
	Test Site: 10m Chamber (Horizontal)	30 MHz ~200 MHz	+/-3.8992dB
Radiated		200 MHz ~1000 MHz	+/-3.9027dB
Emission (10m)		30 MHz ~200 MHz	+/-3.8928dB
	Test Site: 966(2)	200 MHz ~1000 MHz	+/-3.8753dB
		1GHz ~8GHz	+/-5.3112dB
		8GHz~18GHz	+/-5.3493dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

6 EMISSION TEST

6.1. CONDUCTED EMISSION MEASUREMENT

6.1.1. LIMITS

Please refer to ETSI EN 301 489-1 Clause 8.3.3 and EN 55022: 2010+AC: 2011 Clause 5, Table 2, Class B

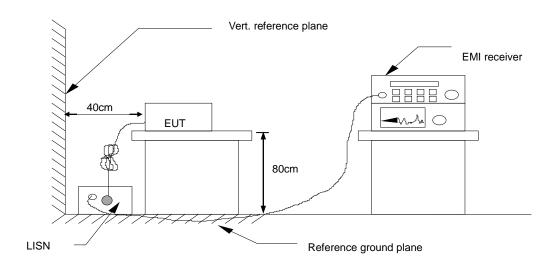
FREQUENCY (MHz)	Class /	A (dBμV)	Class B (dBµV)	
TREGOLITOT (MITZ)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.1.2. TEST INSTRUMENTS

	Conducted Emission Test Site										
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration						
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	02/21/2016	02/20/2017						
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	02/21/2016	02/20/2017						
LISN	EMCO	3825/2	8901-1459	02/21/2016	02/20/2017						
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	02/21/2016	02/20/2017						
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE									


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

6.1.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-026)

Please refer to ETSI EN 301 489-1 Clause 8.3.3 and EN 55022: 2010+AC: 2011 Clause 5 for the measurement methods.

6.1.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

6.1.5. DATA SAMPLE

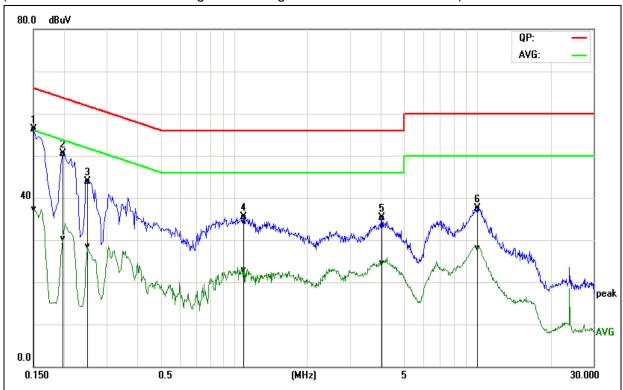
Frequency (MHz)		Average Reading (dBµV)		QuasiPeak Result (dBµV)	Average Result (dBµV)	QuasiPeak Limit (dBµV)	Average Limit (dBµV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

Limit = Limit stated in standard

Margin = Result $(dB\mu V)$ – Limit $(dB\mu V)$

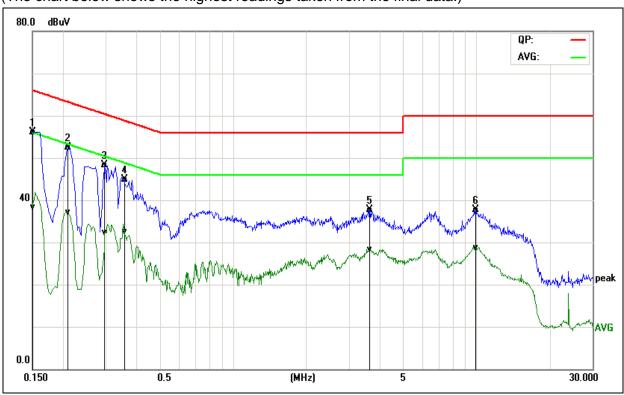

Calculation Formula

Margin (dB) = Result (dB μ V) – Limit (dB μ V)

6.1.6. TEST RESULTS

Model No.	XN690	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Saber Huang	Line	L1
Test Date	2016/10/28		

(The chart below shows the highest readings taken from the final data.)



Frequency										Remark
(MHz)	Reading (dBuV)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Result (dBuV)	Limit (dBuV)	Limit (dBuV)	Margin (dB)	Margin (dB)	(Pass/Fail)
0.1500	46.39	27.33	9.98	56.37	37.31	65.99	56.00	-9.62	-18.69	Pass
0.1980	40.57	20.37	9.99	50.56	30.36	63.69	53.69	-13.13	-23.33	Pass
0.2500	33.93	18.49	9.99	43.92	28.48	61.75	51.76	-17.83	-23.28	Pass
1.0940	25.41	12.90	10.01	35.42	22.91	56.00	46.00	-20.58	-23.09	Pass
4.0580	25.19	14.25	10.20	35.39	24.45	56.00	46.00	-20.61	-21.55	Pass
9.9700	27.28	17.77	10.27	37.55	28.04	60.00	50.00	-22.45	-21.96	Pass

REMARKS: L1 = Line One (Live Line)

Model No.	XN690	RBW,VBW	9 kHz
Environmental Conditions	22°C, 45% RH	Test Mode	Mode 1
Tested by	Saber Huang	Line	L2
Test Date	2016/10/28		

(The chart below shows the highest readings taken from the final data.)

Frequency		_				QuasiPeak	_		•	Remark
(MHz)	Reading (dBuV)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Result (dBuV)	Limit (dBuV)	Limit (dBuV)	Margin (dB)	Margin (dB)	(Pass/Fail)
0.1500	46.21	28.23	9.98	56.19	38.21	65.99	56.00	-9.80	-17.79	Pass
0.2100	42.42	27.13	9.99	52.41	37.12	63.20	53.21	-10.79	-16.09	Pass
0.2980	38.22	22.25	9.99	48.21	32.24	60.30	50.30	-12.09	-18.06	Pass
0.3580	34.93	22.59	9.98	44.91	32.57	58.77	48.77	-13.86	-16.20	Pass
3.6420	27.50	18.09	10.17	37.67	28.26	56.00	46.00	-18.33	-17.74	Pass
9.9220	27.45	18.36	10.27	37.72	28.63	60.00	50.00	-22.28	-21.37	Pass

REMARKS: L2 = Line Two (Neutral Line)

6.2. RADIATED EMISSION MEASUREMENT

6.2.1. LIMITS

Please refer to ETSI EN 301 489-1 Clause 8.2.3, Table 3 and EN 55022: 2010+AC: 2011 Clause 6, Table 6 Class B

FREQUENCY (MHz)	dBμV/m (At 10m)
	Class B
30 ~ 230	30
230 ~ 1000	37

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

Table 8&9: Limits for radiated disturbance above 1 GHz at a measurement distance of 3 m

Frequency	Class A (dBµV/m)	Class B (dBµV/m)		
(GHZ)	Average	Peak	Average	Peak	
1~3	56	76	50	70	
3~6	60	80	54	74	

Notes:

- (1) The lower limit shall apply at the transition frequencies.
- (2) Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.
- (4) If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz
- (5) If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.
- (6) If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

Reference No.: C161020Z03-RE

Report No.: C161220Z02-RE

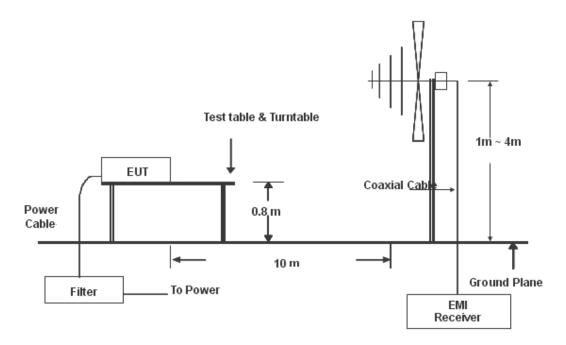
Below 1GHz

	Radiated Emis	sion Test Site (10m Cham	ber)		
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100088	02/21/2016	02/20/2017	
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100145	02/21/2016	02/20/2017	
Amplifier	MITEQ	AM-1604-3000	1093583	02/28/2016	02/27/2017	
Amplifier	Mini-Circuits	ZKL-1R5	6511600437	03/18/2016	03/17/2017	
Bi-log Antenna	TESEQ	CBL6143A	26039	02/21/2016	02/20/2017	
Bi-log Antenna	TESEQ	CBL6143A	32399	02/21/2016	02/20/2017	
System-Controller	ccs	CC-C-F	N/A	N.C.R	N.C.R	
System-Controller	ccs	CC-C-F	N/A	N.C.R	N.C.R	
Turn Table	ccs	CC-T-1F	N/A	N.C.R	N.C.R	
Antenna Tower	ccs	CC-A-1F	N/A	N.C.R	N.C.R	
Antenna Tower	ccs	CC-A-1F	N/A	N.C.R	N.C.R	
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	02/21/2016	02/20/2017	
Test S/W	FARAD		EZ-EMC/ C	CCS-2Ant		

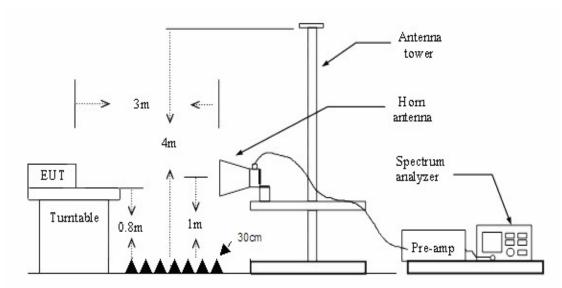
Above 1GHz

	Radiated	Emission Test	Site 966(2)				
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration		
Spectrum Analyzer	Agilent	N9010A	MY52221469	02/21/2016	02/20/2017		
Amplifier	MITEQ	AM-1604-3000	1123808	03/18/2016	03/17/2017		
High Noise Amplifier	Agilent	8449B	3008A01838	02/21/2016	02/20/2017		
Bilog Antenna	SCHAFFNER	CBL6143	5082	02/21/2016	02/20/2017		
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02/28/2016	02/27/2017		
Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	02/28/2016	02/27/2017		
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R		
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R		
Controller	СТ	N/A	N/A	N.C.R	N.C.R		
Signal Generator	Anritsu	MG3694A	#050125	02/28/2016	02/27/2017		
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2016	02/20/2017		
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R		
Test S/W	FARAD	LZ-RF / CCS-SZ-3A2					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. N.C.R = No Calibration Request.

6.2.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-023)


Please refer to ETSI EN 301 489-1 Clause 8.2.3 and EN 55022: 2010+AC: 2011 Clause 6 for the measurement methods.

6.2.4. TEST SETUP

Below 1 GHz

Above 1 GHz

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

6.2.5. DATA SAMPLE

Below 1GHz

Frequency (MHz)	Reading (dBµV)	Correct Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
XXX.XXXX	37.47	-16.41	21.06	30.00	-8.94	QP

Frequency (MHz) = Emission frequency in MHz

Reading (dB μ V) = Uncorrected Analyzer / Receiver reading Correct Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain Result (dB μ V/m) = Reading (dB μ V) + Corr. Factor (dB/m)

Limit ($dB\mu V/m$) = Limit stated in standard

Margin (dB) = Result (dB μ V/m) – Limit (dB μ V/m)

Peak = Peak Reading Q.P. = Quasi-peak Reading

Above 1GHz

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark
XXXX.XXXX	55.54	4.56	60.10	70.00	-9.90	Peak
XXXX.XXXX	49.78	4.56	38.36	50.00	-11.64	AVG

Frequency (MHz) = Emission frequency in MHz

Reading (dB μ V) = Uncorrected Analyzer / Receiver reading Correction Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain Result (dB μ V/m) = Reading (dB μ V) + Corr. Factor (dB/m)

Limit ($dB\mu V/m$) = Limit stated in standard

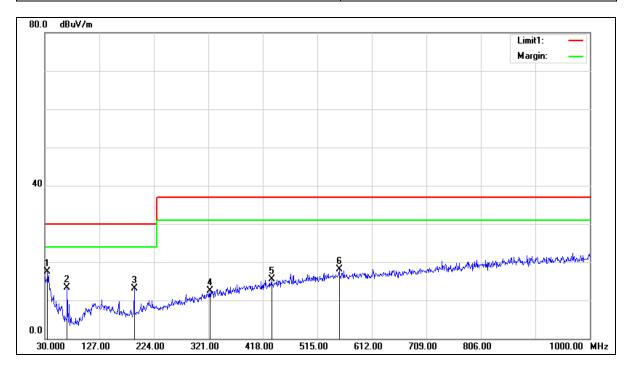
Margin (dB) = Result (dB μ V/m) – Limit (dB μ V/m)

Peak = Peak Reading AVG = Average Reading

Calculation Formula

Margin (dB) = Result (dB μ V/m) – Limits (dB μ V/m)

Result $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Correction Factor (dB/m)


6.2.6. TEST RESULTS

No non-compliance noted

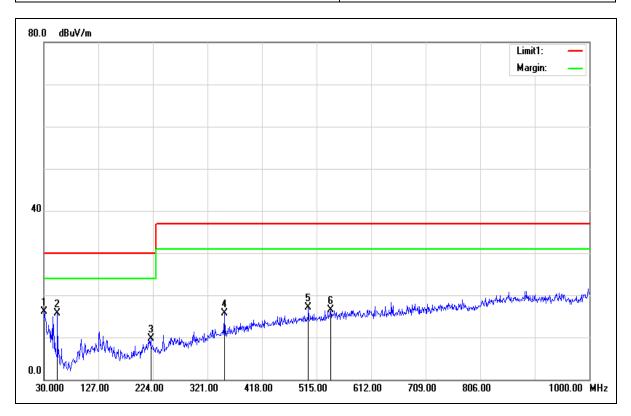
Test Data

Below 1GHz

Location: 10m chamber	Tested by: Saber Huang
Test Mode: Mode 1	Test Distance: 10m
Detector Function: Quasi-peak	Test Results: Pass
Test Date: October 31, 2016	

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
34.8500	37.92	-20.50	17.42	30.00	-12.58	V	QP
69.7700	44.71	-31.47	13.24	30.00	-16.76	V	QP
189.0800	40.99	-27.83	13.16	30.00	-16.84	V	QP
323.9100	36.54	-24.00	12.54	37.00	-24.46	V	QP
433.5200	36.43	-21.00	15.43	37.00	-21.57	V	QP
553.8000	36.56	-18.46	18.10	37.00	-18.90	V	QP

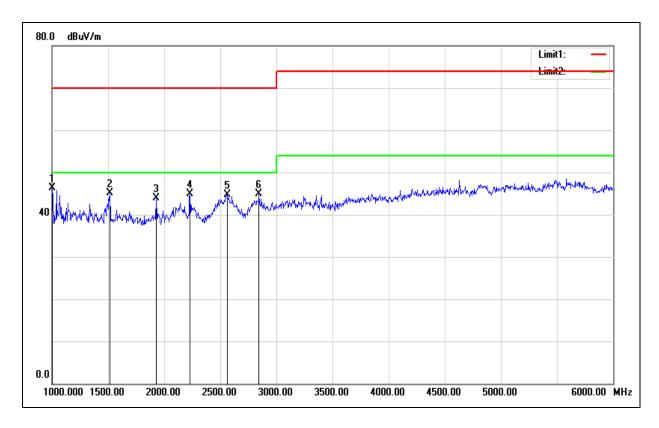
Remarks:


- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 4. Measurements above show only up to 6 maximum emissions noted.
- 5. The IF bandwidth of SPA 30MHz to 1GHz was 100kHz.

Compliance Certification Services (Shenzhen) Inc.

Reference No.: C161020Z03-RE Report No.: C161220Z02-RE

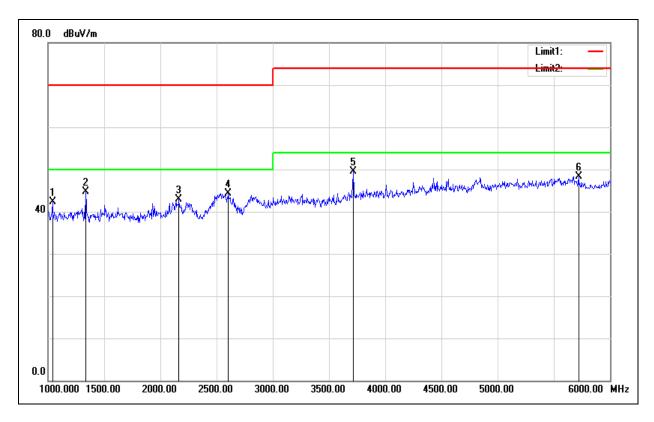
Location: 10m chamber	Tested by: Saber Huang
Test Mode: Mode 1	Test Distance: 10m
Detector Function: Quasi-peak	Test Results: Pass
Test Date: October 31, 2016	


Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
30.9700	34.74	-18.72	16.02	30.00	-13.98	Н	QP
54.2500	44.23	-28.62	15.61	30.00	-14.39	Н	QP
220.1200	36.09	-26.42	9.67	30.00	-20.33	Н	QP
351.0700	39.40	-23.75	15.65	37.00	-21.35	Н	QP
500.4500	37.21	-20.20	17.01	37.00	-19.99	Н	QP
540.2200	35.80	-19.26	16.54	37.00	-20.46	Н	QP

Remarks:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 4. Measurements above show only up to 6 maximum emissions noted.
- 5. The IF bandwidth of SPA 30MHz to 1GHz was 100kHz.

Above 1GHz


Location: 966 chamber	Tested by: Saber Huang
Test Mode: Mode 1	Test Distance: 3m
Detector Function: Peak	Test Results: Pass
Test Date: October 29, 2016	

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1005.000	54.77	-8.53	46.24	70.00	-23.76	V	Peak
1515.000	52.02	-6.85	45.17	70.00	-24.83	V	Peak
1930.000	49.41	-5.44	43.97	70.00	-26.03	V	Peak
2230.000	48.64	-3.74	44.90	70.00	-25.10	V	Peak
2560.000	46.90	-2.15	44.75	70.00	-25.25	V	Peak
2845.000	46.48	-1.64	44.84	70.00	-25.16	V	Peak

Location: 966 chamber	Tested by: Saber Huang
Test Mode: Mode 1	Test Distance: 3m
Detector Function: Peak	Test Results: Pass
Test Date: October 29, 2016	

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1040.000	50.61	-8.40	42.21	70.00	-27.79	Н	Peak
1335.000	52.02	-7.30	44.72	70.00	-25.28	Н	Peak
2165.000	46.93	-4.10	42.83	70.00	-27.17	Н	Peak
2605.000	46.42	-2.07	44.35	70.00	-25.65	Н	Peak
3715.000	49.15	0.39	49.54	74.00	-24.46	Н	Peak
5720.000	42.41	5.96	48.37	74.00	-25.63	Н	Peak

6.3. HARMONICS CURRENT MEASUREMENT

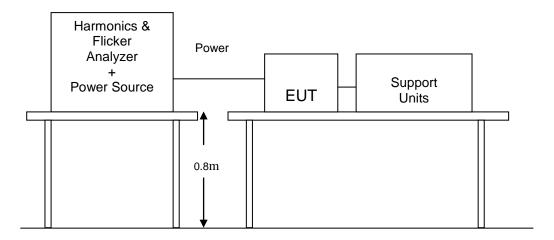
6.3.1. LIMITS OF HARMONICS CURRENT MEASUREMENT

Limits for	Class A equipment		Limits for Class D equipment				
Harmonics Order n	Max. permissible harmonics current A	Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A			
Od	ld harmonics		Odd Harmonics only				
3	2.30	3	3.4	2.30			
5	1.14	5	1.9	1.14			
7	0.77	7	1.0	0.77			
9	0.40	9	0.5	0.40			
11	0.33	11	0.35	0.33			
13	0.21	13	0.30	0.21			
15<=n<=39	0.15x15/n	15<=n<=39	3.85/n	0.15x15/n			
Eve	en harmonics						
2	1.08						
4	0.43						
6	0.30						
8<=n<=40	0.23x8/n						

NOTE: 1. Class A and Class D are classified according to item 4.4.3.

6.3.2. TEST INSTRUMENTS

Harmonic Current Measurement (EN 61000-3-2)								
Name of Equipment	Last Calibration	Due Calibration						
Power Source	SCHAFFNER	NSG1007	54789	02/21/2016	02/20/2017			
Harmonic & Flicker Tester	SCHAFFNER	CCN1000	72045	02/21/2016	02/20/2017			
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2016	02/20/2017			
Aneroid Barograph	Ningbo Yinzhou Glass Instrument	DYM3	11041305	03/11/2016	03/10/2017			


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

6.3.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-029)

Please refer to ETSI EN 301 489-1 Clause 8.5 and EN 61000-3-2: 2014 for the measurement methods.

^{2.} According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

6.3.4. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

6.3.5. TEST RESULTS

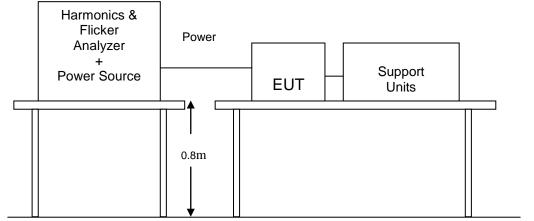
Not applicable, since the EUT received DC power from the notebook.

6.4. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

6.4.1. LIMITS OF VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

TEST ITEM	LIMIT	REMARK
P_{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3.3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

6.4.2. TEST INSTRUMENTS


Voltage Fluctuation/Flicker Measurement (EN 61000-3-3)								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
Power Source	SCHAFFNER	NSG1007	54789	02/21/2016	02/20/2017			
Harmonic & Flicker Tester	SCHAFFNER	CCN1000	72045	02/21/2016	02/20/2017			
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2016	02/20/2017			
Aneroid Barograph	Ningbo Yinzhou Glass Instrument	DYM3	11041305	03/11/2016	03/10/2017			

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

6.4.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-030)

Please refer to ETSI EN 301 489-1 Clause 8.6 and EN 61000-3-3: 2013 for the measurement methods.

6.4.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

6.4.5. TEST RESULTS

Not applicable, since the EUT received DC power from the notebook.

7 IMMUNITY TEST

7.1. GENERAL DESCRIPTION

Product		ETSI EN 301 489-1
Standard	Test Type	Minimum Requirement
	EN 61000-4-2	Electrostatic Discharge - ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B
	EN 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test - RS: 80 ~1000MHz, 1400~2700 MHz, 3V/m, 80% AM(1kHz), Performance Criterion A
	EN 61000-4-4	Electrical Fast Transient/Burst - EFT, Power line: 1kV, Signal line: 0.5kV, Performance Criterion B
Basic Standard, Specification, and Performance Criterion required	EN 61000-4-5	Surge Immunity Test: 1.2/50 us Open Circuit Voltage, 8 /20 us Short Circuit Current, 1.2/50 us Signal and Telecommunication Power Port ~ Line to line: 1kV, Line to ground: 2kV Signal Port ~ Lines to ground: 1kV Performance Criterion B
	EN 61000-4-6	Conducted Radio Frequency Disturbances Test - CS: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A
	EN 61000-4-11	Voltage dip: 0 % residual voltage for 0,5 cycle Performance Criterion B Voltage dip: 0 % residual voltage for 1 cycle Performance Criterion B Voltage dip: 70 % residual voltage for 25 cycles Performance Criterion B Voltage interruption: 0 % residual voltage for 250 cycles Performance Criterion C

7.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

	Performance table for EN 301 489-17									
Criteria	During test	After test								
А		Shall operate as intended Shall be no degradation of performance (see note 2) Shall be no loss of function Shall be no loss of stored data or user programmable functions								
В	May show loss of function (one or more) May show degradation of performance (see note 1) No unintentional transmissions	Functions shall be self-recoverable Shall operate as intended after recovering Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions								
С	May be loss of function (one or more)	Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)								

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Performance criteria for Continuous phenomena applied to Transmitters (CT)

The performance criteria A shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Transmitters (TT)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement.

(NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Continuous phenomena applied to Receivers (CR)

The performance criteria A shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Performance criteria for Transient phenomena applied to Receivers (TR)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.

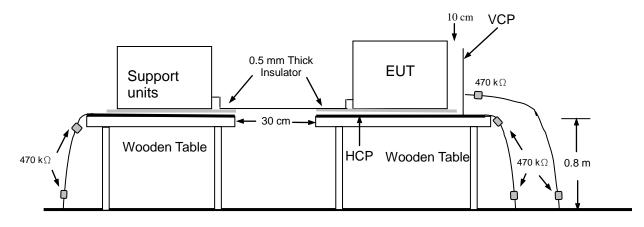
Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

7.3. ELECTROSTATIC DISCHARGE (ESD)

7.3.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-2
Discharge Impedance:	330 ohm / 150 pF
Discharge Voltage:	Air Discharge: 2; 4; 8 kV (Direct) Contact Discharge: 2; 4 kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Minimum 10 times at each test point
Discharge Mode:	Single Discharge 1 second minimum

7.3.2. TEST INSTRUMENT


ESD test (EN 61000-4-2)									
Name of Equipment Manufacturer Model Serial Last De Number Calibration Calibration									
Dito ESD Simulator	EM Test	dito	V0809103493	02/21/2016	02/20/2017				
Temp. / Humidity Meter	VICTOR	VC230	N/A	03/04/2016	03/03/2017				
Aneroid Barograph	Ningbo Yinzhou Glass Instrument	DYM3	11041305	03/11/2016	03/10/2017				

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

7.3.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-022)

Please refer to ETSI EN 301 489-1 Clause 9.3.2 and EN 61000-4-2 for the measurement methods.

7.3.4. TEST SETUP

Ground Reference Plane

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Compliance Certification Services (Shenzhen) Inc.

Reference No.: C161020Z03-RE Report No.: C161220Z02-RE

NOTE

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

Compliance Certification Services (Shenzhen) Inc.

Reference No.: C161020Z03-RE Report No.: C161220Z02-RE

7.3.5. TEST RESULTS

Temperature	25°C	Humidity	50% RH
Pressure	1002mbar		Saber Huang
Test Date	October 31, 2016	Required Passing Performance	Criterion B

Mode 1: Normal

Air Discharge								
Test Levels Results								
Points	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Observation				
Front						□A □B	Note □ 1 □ 2 ⊠ 3	
Back						□A □B	Note	
Left						□A □B	Note	
Right						□A □B	Note □ 1 □ 2 ⋈ 3	
Тор	\boxtimes					□A ⊠B	Note □ 1 ⋈ 2 □ 3	
Bottom						□A □B	Note □ 1 □ 2 ⋈ 3	

Contact Discharge								
Test Levels Results								
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Observation				
Front						□А □В	Note □ 1 □ 2 ⊠ 3	
Back	\boxtimes					□A ⊠B	Note	
Left						□A □B	Note	
Right						□A □B	Note	
Тор	\boxtimes					□A ⊠B	Note	
Bottom	\boxtimes					□A ⊠B	Note □ 1 ⋈ 2 □ 3	

Discharge To Horizontal Coupling Plane									
	Test Levels Results								
Side of EUT	± 2 kV	± 4 kV	±8 kV	Pass Fail Performance Observation					
Front						□A ⊠B	Note		
Back						□A ⊠B	Note		
Left						□A ⊠B	Note		
Right	\boxtimes	\boxtimes		\boxtimes		□A ⊠B	Note □ 1 ⊠ 2		

Discharge To Vertical Coupling Plane								
Test Levels Results								
Side of EUT	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Observation				
Front						□A ⊠B	Note □ 1 ⊠ 2	
Back	\boxtimes					□A ⊠B	Note	
Left						□A ⊠B	Note	
Right	\boxtimes	\boxtimes		\boxtimes		□A ⊠B	Note	

NOTE:

- 1. There was no change compared with initial operation during the test.
- 2. The EUT is interrupted momentarily during the test, but self-recoverable immediately after the test
- 3. Means that no discharge point had been occurred during that particular coupling method.

Remark: The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

The Photo for Discharge Points of EUT

Red dot —Air Discharge points Green dot —Contact Discharge Points

Red dot —Air Discharge points Green dot —Contact Discharge Points

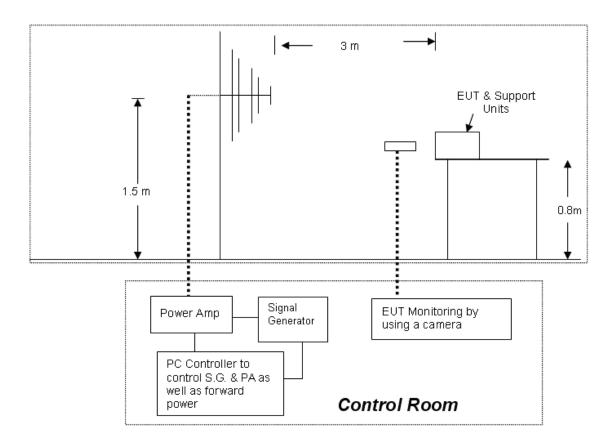
7.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

7.4.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-3
Frequency Range:	80 MHz ~1000 MHz & 1400 MHz ~2700 MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of preceding frequency value
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m
Antenna Height:	1.5m

7.4.2. TEST INSTRUMENT

Radiated	Radiated Electromagnetic Field immunity Measurement (EN 61000-4-3)										
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration						
Signal Generator	ROHDE&SCHWARZ	SMA100A	100434	02/21/2016	02/20/2017						
RF-Switch Network	TESEQ	RF-Switch Network	N/A	N/A	N/A						
Power Amplifier	SCHAFFNER	CBA9433	3007	02/21/2016	02/20/2017						
Power Amplifier	TESEQ	CBA 3G-050	T44161	02/21/2016	02/20/2017						
Directional Coupler	AR	DC6180A	328212	N.C.R	N.C.R						
Directional Coupler	AR	DC7144A	327057	N.C.R	N.C.R						
Bilog Antenna	SCHAFFNER	CBL6143	5063	02/21/2016	02/20/2017						
Stacked Double LogPer. Antenna	Schwarzbeck	STLP9149	9149-163	02/21/2016	02/20/2017						
Power Meter	TESEQ	PM6006	72784	02/21/2016	02/20/2017						
Power Meter	TESEQ	PM6006	72353	02/21/2016	02/20/2017						
Electric Field Probe	EST-LINDGREN	HI-6005	00083480	02/28/2016	02/27/2017						
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2016	02/20/2017						


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

7.4.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-023)

Please refer to ETSI EN 301 489-1 Clause 9.2.2, ETSI EN 301 489-17 Clause 7.2.2 and EN 61000-4-3 for the measurement methods.

7.4.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

7.4.5. TEST RESULTS

Temperature	25°C	Humidity	50% RH
Pressure	1002mbar	Dwell Time	3 sec.
Tested By	isaner Hijand	Required Passing Performance	Criterion A
Test Date	October 31, 2016		

⊠<u>Description of Test (Mode 1)</u>

Frequency (MHz)	Polarity	Position	Field Strength (V/m)	Criteria meet	Result
80 ~1000, 1400~ 2700	V&H	Front	3	⊠ A/ □ B/ □ C	PASS
80 ~1000, 1400~ 2700	V&H	Right	3	⊠ A/ □ B/ □ C	PASS
80 ~1000, 1400~ 2700	V&H	Back	3	⊠ A/ □ B/ □ C	PASS
80 ~1000, 1400~ 2700	V&H	Left	3	⊠ A/ □ B/ □ C	PASS

NOTE: There was no change compared with the initial operation during the test.

Remark: The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

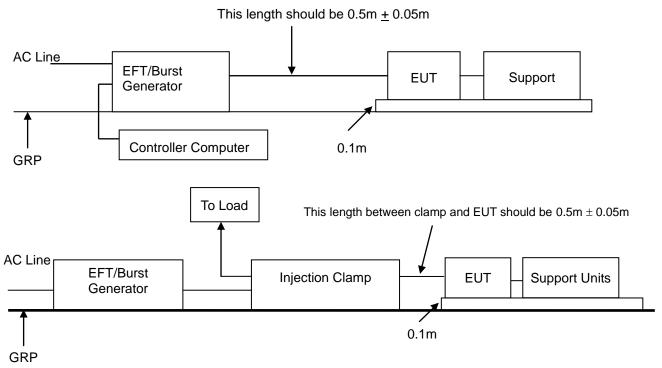
7.5. ELECTRICAL FAST TRANSIENT (EFT)

7.5.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-4
Test Voltage:	Power Line: 1 kV Signal/Control Line: 0.5 kV
Polarity:	Positive & Negative
Impulse Frequency:	5 or 100kHz
Impulse Wave-shape:	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	Not less than 1 min.

7.5.2. TEST INSTRUMENT

Fast Transients/Burst test (EN 61000-4-4)								
Name of Equipment Manufacturer Model Number Serial Last Due Calibration Calibration								
Fast Transients/Burst Generator	TESEQ	NSG3025	26861	02/21/2016	02/20/2017			
Aneroid Barograph	Ningbo Yinzhou Glass Instrument	DYM3	11041305	03/11/2016	03/10/2017			
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2016	02/20/2017			
fast Transients/Burt Generator CDN	TESEQ	CDN8014	26192	02/21/2016	02/20/2017			


NOTES: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

7.5.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-024)

Please refer to ETSI EN 301 489-1 Clause 9.4.2 and EN 61000-4-4 for the measurement methods.

7.5.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

7.5.5. TEST RESULTS

Temperature	25°C	Humidity	50% RH
Pressure	1002mbar	Tested By	Saber Huang
Test Date	IUCTOBER 31 ZU16	Required Passing Performance	Criterion B

Results of Final Tests (Mode 1)

Test Point	Polarity	Test Level (kV)	Performance Criterion		Ohservation		Result
L	+/-	1	□А	⊠B	Note □1	⊠2	PASS
N	+/-	1	□А	⊠B	Note □1	⊠2	PASS
L - N	+/-	1	□А	⊠B	Note □1	⊠2	PASS
PE	+/-	1	□А	⊠B	Note □1	⊠2	PASS
L – PE	+/-	1	□А	⊠B	Note □1	⊠2	PASS
N – PE	+/-	1	□А	⊠B	Note □1	⊠2	PASS
L – N – PE	+/-	1	□А	⊠B	Note 🗌 1	⊠2	PASS
RJ45	+/-		□А	□В	Note 1	□ 2	N/A

NOTE: 1. There was no change compared with initial operation during the test.

Remark: The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

^{2.} The loss of function of the EUT during the test and it was recovered by itself operation after the test.

7.6. SURGE IMMUNITY TEST

7.6.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-5			
Wave-Shape:	Combination Wave			
•	1.2/50 μs Open Circuit Voltage			
	8/20 µs Short Circuit Current			
	1.2/50µs Signal and Telecommunication			
Test Voltage:	AC Power Port~ line to line: 1kV, line to ground: 2kV			
	DC Power Port~ line to earth: 0.5kV			
	Signal and Telecommunication Ports ~ line to ground:			
	1kV			
Surge Input/Output:	Power Line: L-N / L-PE / N-PE			
	Telecommunication line: T-Ground / R-Ground			
Generator Source Impedance:	Power Line:2 ohm between networks			
	12 ohm between network and ground			
	Telecommunication line: 25/100 ohm			
Polarity:	Positive/Negative			
Phase Angle:	0° / 90° / 180° / 270°			
Pulse Repetition Rate:	1 time / min. (maximum)			
Number of Tests:	5 positive and 5 negative at selected points			

7.6.2. TEST INSTRUMENT

Surge(EN 61000-4-5)						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
Control Center	Thermo	E103	0605173	N.C.R	N.C.R	
Coupler/Decoupler	Thermo	E4551KV	0605180	02/21/2016	02/20/2017	
Telecom Wave	Thermo	E502B	0605178	02/21/2016	02/20/2017	
Surge Network	Thermo	E510A	0605179	02/21/2016	02/20/2017	
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/21/2016	02/20/2017	
Aneroid Barograph	Ningbo Yinzhou Glass Instrument	DYM3	11041305	03/11/2016	03/10/2017	
CM-TELCD Telecom Coupler/Decoupler	Thermo	N/A	0604249	N.C.R	N.C.R	
Surge Coupling Decoupling Network	TESEQ	CDN HSS-2	34274	02/21/2016	02/20/2017	

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

7.6.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-025)

Please refer to ETSI EN 301 489-1 Clause 9.8.2 and EN 61000-4-5 for the measurement methods.

To AC Source Surge Immunity Test Support Units

Controller Computer

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.6.5. TEST RESULTS

Not applicable, since the EUT received DC power from the notebook.

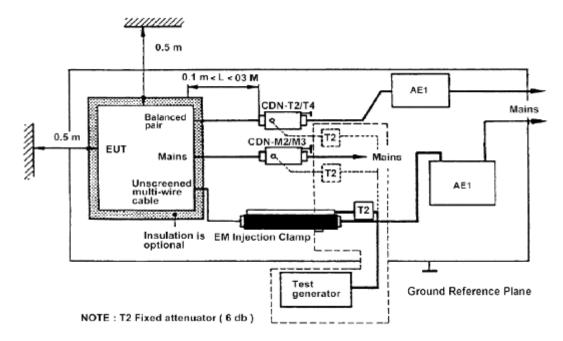
7.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

7.7.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-6
Frequency Range:	0.15 MHz ~ 80 MHz
Field Strength:	3 Vrms
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of preceding frequency value
Coupled cable:	Power Mains, Unshielded
Coupling device:	CDN-M3

7.7.2. TEST INSTRUMENT

CS test (EN 61000-4-6)						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
Signal Generator	TESEQ	NSG4070	25807	02/21/2016	02/20/2017	
Attenuator	TESEQ	ATN6075	25371	02/21/2016	02/20/2017	
CDN	TESEQ	CDN M316	24517	02/21/2016	02/20/2017	
CDN	TESEQ	CDN T400A	26022	02/21/2016	02/20/2017	
CDN	TESEQ	CDN T800	34427	02/21/2016	02/20/2017	
CDN	Luthi	CDN801-M1	1795	02/21/2016	02/20/2017	
CDN	Luthi	CDN 801-M2	1897	02/21/2016	02/20/2017	
CDN	Luthi	CDN801-M3	1882	02/21/2016	02/20/2017	
Temp. / Humidity Mete	Anymetre	JR913	N/A	02/21/2016	02/20/2017	
Aneroid Barograph	Ningbo Yinzhou Glass Instrument	DYM3	11041305	03/11/2016	03/10/2017	
EM-CLAMP	TESEQ	KEMZ801A	33441	02/21/2016	02/20/2017	


NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

7.7.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-026)

Please refer to ETSIETSI EN 301 489-1 Clause 9.5.2, ETSI EN 301 489-17 Clause 7.2.2 and EN 61000-4-6 for the measurement methods.

7.7.4. TEST SETUP

Note: 1. The EUT is setup 0.1m above Ground Reference Plane
2. The CDNs and / or EM clamp used for real test depends on ports and cables configuration of

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLE-TOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

7.7.5. TEST RESULTS

EUT.

Not applicable, since the EUT received DC power from the notebook.

7.8. VOLTAGE DIP & VOLTAGE INTERRUPTIONS

7.8.1. TEST SPECIFICATION

Basic Standard:	EN 61000-4-11
Test duration time:	Minimum three test events in sequence
Interval between event:	Minimum 10 seconds
Phase Angle:	0° / 45° / 90° / 135° / 180° / 225° / 270° / 315° /360°
Test cycle:	3 times

7.8.2. TEST INSTRUMENT

Voltage Dips &Interruptions(EN 61000-4-11)							
Name of Equipment Manufacturer Model Number Serial Last Due Calibration Calibration							
Power Source	SCHAFFNER	NSG1007	54789	02/21/2016	02/20/2017		
Profline 2100 AC Switching Unit	TESEQ	NSG2200-1	A17820	02/21/2016	02/20/2017		
Temp. / Humidity Mete	Anymetre	JR913	N/A	02/21/2016	02/20/2017		
Aneroid Barograph	Ningbo Yinzhou Glass Instrument	DYM3	11041305	03/11/2016	03/10/2017		

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

7.8.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-028)

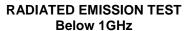
Please refer to ETSI EN 301 489-1 Clause 9.7.2 and EN 61000-4-11 for the measurement methods.

To AC Source Dips/Interruption and Variations Simulator Support Units

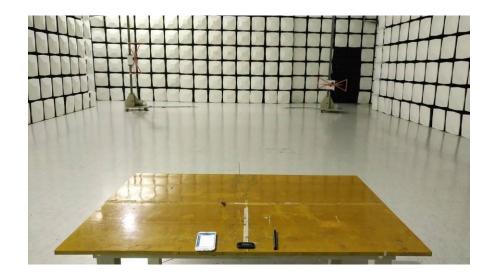
For the actual test configuration, please refer to the related item - Photographs of the Test Configuration

7.8.5. TEST RESULTS

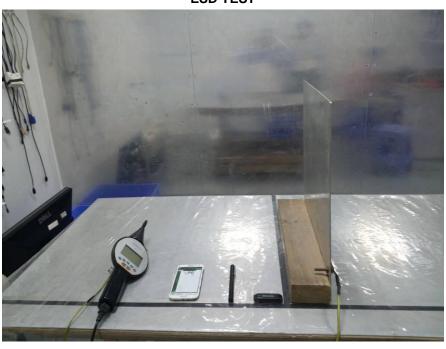
Not applicable, since the EUT received DC power from the notebook.


Controller Computer

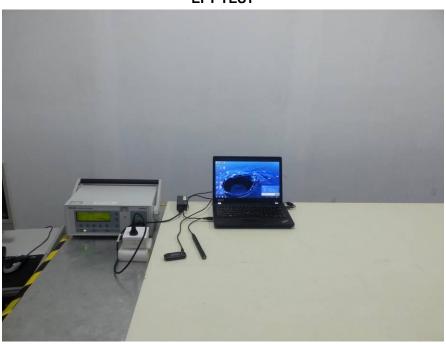
PHOTOGRAPHS OF THE TEST CONFIGURATION


CONDUCTED EMISSION TEST




Compliance Certification Services (Shenzhen) Inc.

Reference No.: C161020Z03-RE Report No.: C161220Z02-RE



RS TEST

EFT TEST

